مهندسي دانش

در جدول 1-4 مقایسهای بین سیستمهای خبره(دانشی) و سیستمهای معمولی(غیردانشی) صورت گرفته است.

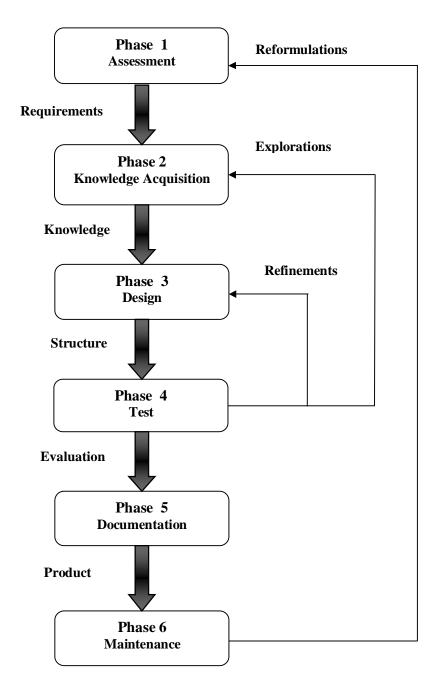
جدول4-1: مقایسه بین سیستمهای خبره و سیستمهای معمولی(Durkin, 1994)

Conventional program	Expert system	
Numeric	Symbolic	
Algorithmic	Heuristic	
Information and control Integrated	Knowledge separate from control	
Difficult to modify	Easy to modify	
Precise Information	Uncertain Information	
Command Interface	Natural dialogue with explanation	
Final result given	Recommendation with explanation	
Optimal solution	Acceptable solution	

برنامه های معمولی، برنامه های عددی هستند در حالی که بر نامه های سیستم های خبره، برنامه های نمادین هستند.

- در برنامه های معمولی داده و کنترل یکپارچه شده در حالی که سیستم های خبره، دانش از کنترل، جدا می شود.
 - تغییر در برنامه معمولی سخت اما در سیستمهای خبره آسان است.
- برای برنامه های معمولی، داده های دقیق نیاز است، در حالی که سیستم های خبره با داده های غیر دقیق نیز کار می کنند.
- برنامه های معمولی باید به جواب نهایی برسد در حالی که سیستم خبره در پایان ممکن است تنها به نتیجه گیری ختم شود.
 - برنامه های معمولی دنبال راه حل دقیق و قطعی هستند اما سیستم های خبره دنبال جواب قابل قبول هستند.

بر نامه نویسی در مقایسه با مهندسی دانش (Programming vs. Knowledge Engineering) برنامه نویسی فر آیند تولید برنامه) سه گام اصلی دارد:


- 1. طراحى (Design): طراحى الگوريتم براى حل مساله موردنظر
- 2. كد نويسى (Code): الكوريتم طراحي شده با يك زبان برنامه نويسي كد مي شود.
 - 3. اشکال زدایی (Debug): رفع خطاهای گرامری و معنایی

مهندسی دانش

فرآیند ساخت و توسعه یک سیستمخبره، مهندسی دانش نامیدهمیشود. ایجاد یک سیستم خبره فرآیندی تکراری است و مراحل مختلف آن در طی تکمیل پروژه ممکن است بارها تکرارشود، یعنی اینکه طراح قسمتی از سیستم را میسازد و تستمی کند و پس از آن دوباره سیستم را توسعه و بهبود میبخشد.

فازهای مهندسی دانش

در شکل 4-1، شش فاز مهندسیدانش، نشاندادهشدهاست.

شكل4-1: شش فاز مهندسىدانش(Durkin, 1994)

The mere formulation of a problem is far more often essential than its solution.

فرمولد کردن محص سمایل، اغلب ازیافتن پایخ آبها به مراتب ضروری تر است. (آلسرت انیشین)

فاز 1 : ارزیابی(Assessment): مشابه فاز امکانسنجی در مهندسی نرمافزار است در این فاز مطالعات و بررسی هایی انجام می شود تا:

- عملى بودن مساله مورد نظر تاييد شود.
- دلایل توجیه کننده و خوبی برای ایجاد و توسعه سیستم خبره مورد نظر پیدا شود.
 - اهداف کلی پروژه تعیین شود.
 - 4. منابع مورد نياز تعيين شود.

فاز 2 : اکتساب دانش (Knowledge Acquisition): فرایند اکتساب، سازماندهی و مطالعه دانش، اکتساب دانش نامیدهمی شود. این فرایند شامل مصاحبه، گفتگو و تکمیل فرمها و به طور کلی اکتساب خبرگی از فرد خبره و متخصص است. این فاز، فراهم کننده دانش مورد نیاز در حل مساله است. خروجی این فاز دانش است که این دانش به مرحله بعد می رود.

فاز 3 : طراحی (Design): در طی این مرحله، ساختار و سازماندهی کلی دانش سیستم خبره، نظیر روشهای پردازش دانش، ابزارها و نرمافزارها برای نمایش و استدلال دانش تعریف میشود. در این مرحله ابزارها و روشهای مناسب انتخاب میشود تا دانش کسب شده در مرحله اکتساب دانش (مرحله پیشین) در واحدهای مناسب ذخیره و بازنمایی شود. معمولا در فاز طراحی یک نمونه اولیه (Prototype) جهت فهم بهتر مساله ایجاد می شود.

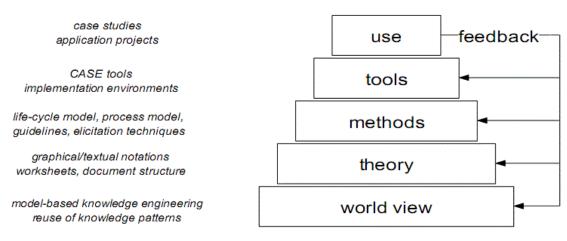
فاز 4 : آزمون (Test): مرحله تست برگشتهایی به فازهای 3 و 2 و دارد. این برگشت بدین معنی است که عملیات آزمون در تمامی مراحل پروژه و سرتاسر مراحل ایجاد سیستم می تواند اعمال شود . هدف فاز تست بررسی صحت و اعتبار ساختار کلی سیستم و دانش استخراج شده است . در این مرحله از راهنماییهای فرد خبره هم استفاده خواهد شد . خروجی طراحی به مرحله تست، ساختار (Structure) است یعنی در این مرحله دانش ، دانش ساختاریافته مورد آزمون قرار می گیرد. بخش مهم گذر از فاز تست ارزیابی است.

فاز 5 : مستندسازی(Documentation): در این مرحله اطلاعاتی در مورد پروژه در قالبهایی نظیر متن و نمودار برای کاربر و توسعهدهنده سیستم خبره جمع آوری و سازماندهی می شود.

فاز 6 : نگهداری (Maintenance): این فاز به معنای ارتقا، بهبود سیستم و رفع اشکالات احتمالی در نظر گرفته شده است تا سیستم در جهت رشد و افزایش دانش و کاهش نواقص احتمالی به حیات خود ادامه دهد. مسیر برگشت در شکل 4-1، نشان دهنده این است که گاهی لازم است تا به مراحل قبلی بازگشت و بخشی را اصلاح کرد. حلقه های موجود در شکل 4-1 اشاره به روند تکاملی و تکراری سیستم دارد.

By three methods we may learn wisdom: First, by reflection, which is noblest; Second, by imitation, which is easiest; and third by experience, which is the bitterest. از سه طریق می توان نرد مند شد: اول از طریق تفکر و مال کداین بهترین است؛ دوم از طریق تقلید کداین ساده ترین است؛ سوم از طریق تتحریکه این تکن ترین است. (کنوئسیر)

المرين ها


تمرین4-1*: امروزه چه ابزارهای کیس(CASE Tools) برای مهندسیدانش ارائهشده و در کدام فازهای مهندسی دانش تاثیر و کارآیی بیشتری داشتهاند؟ **تمرین4-**2: شکل4-2 روند تکامل و نسلهای مختلف سیستمهای دانشی را در گذر زمان، نشانمیدهد. این شکل بر چه نکات مهمی تاکید دارد؟

g

eneral-purpose search engines (GPS)	first-generation rule-based systems (MYCIN, XCON)	emergence of structured methods (early KADS)	mature methodologies (CommonKADS)
1965	1975	1985	1995
	=> from art to	discipline =>	
	ں دانشی(Scriber et al, 2000)	شکل4- 2: پیشینهای از سیستمهای	

تمرین4-3: مفهوم مهندسیدانش را با مهندسینرمافزار، مقایسه کنید. چه شباهتها و تفاوتهایی بین این دو مفهوم وجود دارد؟ **تمرین4-4***: بررسی کنید که امروزه چه متدولوژیهایی برای مهندسیدانش پیشنهادشدهاست؟ این متدولوژیها بیشتر به چه جنبههای سیستمهای دانشی توجهداشتهاند؟

تمرین 4-5*: یکی از متدولوژیهای مهم در مهندسی دانش، متدولوژی کامن کدس(CommonKADS) است. ایـن متـدولوژی چـه ویژ گـیهـای بـارزی دارد؟ چرا این متدولوژی همانند متدولوژی RUP در مهندسی نرمافزار، فراگیر نشدهاست؟ **تموین 4-**6: هرم متدولوژیکی شکل 4-3 را همراه با مثال توضیح دهید.

شكل4-3: هرم متدولوژيكي (Scriber et al, 2000)

تمرین4-7: اصطلاح فرهنگ دانش (Knowledge Dictionary) در مهندسی دانش به چه معناست و به چه منظوری استفادهمی شود؟ همراه با مثال توضیح دهید. تمرین4-8: تفاوت دو واژه محصول (Product) و فرآورده (Artifact) در ادبیات مهندسی دانش (یا مهندسی نرمافزار) چیست؟ با مثال توضیح دهید.

خرد کرایی نکرشی است مبتنی برآمادی شنیدن نظرات مخالف و آموختن از تجارب . . . و نیز ادخان به اینکه مکن است مرد اشتاد مانه مو ثلا صحیح بکوید، بابا تلاش مکن است به حقیقت نزدیکتر شویم . (کارل پر با

Rationalism is an attitude of readiness to listen to contrary arguments and to learn from experience... of admitting that : I may be wrong and you may be right and, by an effort, we may get nearer the truth.